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equation

S.V. Djordjević and José A. Canavati

Abstract
Let T ∈ B(X) and x ∈ X. In this paper we consider continuity of local

spectra like the mappings T 7→ σT (x) and x 7→ σT (x) started in [2]. Also,
we introduce one generalization of the well-known first resolvent equation by
means of local resolvent function.

1. Introduction

Throughout this note let X be Banach space, let B(X) denote the set of bounded
linear operators on X. If T ∈ B(X), let σ(T ) and ρ(T ) denote the spectrum and
resolvent set of T , respectively. Also, with r(T ) we denote spectral radius of T , i.e.
r(T ) = limn→∞ ‖T n‖1/n = infn∈N ‖T n‖1/n and k(T ) denote the lower bound, k(T ) =
inf{‖Tx‖ : x ∈ X with ‖x‖ = 1}. Let i(T ) = limn→∞ k(T n)1/n = supk∈N k(T n)1/n

(see [4, pg. 77]).
We say that T ∈ B(X) has the single valued extension property (SVEP) if for

every open set U of C the only analytic function f : U −→ X which satisfies the
equation

(T − λ)f(λ) = 0

is the constant function f ≡ 0 on U , and T satisfies (Dunford’s) condition (C) if
the set

χT (F ) = {x ∈ X : there exists an X-valued analytic function

f : C\F → X such that(T − λ)f(λ) = x}
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is closed for every subset F ⊂ C. In this case, for x ∈ X there is a maximal analytic
function fx : Ux → X satisfying (T − λ)fx(λ) = x on Ux and we call this function
the local resolvent function with respect of T at x ∈ X. Set σT (x) = C \ Ux and
ρT (x) = C \ σT (x). Then σT (x) is called the local spectrum and ρT (x) is called the
local resolvent set for T at x.

2. Continuity of local spectra

In [2] Dollinger and Oberai give examples that in general the mapping T 7→ σT (x)
is not neither lower and upper semi-continuous (see Examples 1 and 2 in [2]). Also
they gave an example shoing that the mapping x 7→ σT (x) is not in general lower
semi-continuous and that for x = 0 is never upper semi-continuous (see [2, Corollary
3.3]). In this paper we will give conditions for continuity of those mappings and we
will show that in some class of operators they are continuous

Theorem 2.1 Let operators Tn ∈ B(X), n = 0, 1, 2, . . ., have the SVEP, Tn in
norm converge to T0 and λ0 be an isolated point in σ(T0). If for some x ∈ X,
λ0 ∈ σT0(x), then λ0 ∈ lim inf σTn(x).

Proof. Since λ0 ∈ iso σ(T0), then there exist ε > 0 and a subset σ0 ⊂ C such
that σ(T0) = {λ0} ∪ σ0 and dist(λ0, σ0) ≥ 3ε. By the upper semi-continuity of the
spectrum (see [5, Theorem 1]) there exists a positive integer n0 such that for every
n ≥ n0 follows that σ(Tn) ⊂ (σ(T0))ε = B(λ0, ε) ∪ (σ0)ε. Let K = {λ ∈ C :
|λ − λ0| = 2ε}. Then K is a simple closed rectifiable curve containing λ0 in its
interior K ∩ σ(T0) = ∅ and for every n ≥ n0, K ∩ σ(Tn) = ∅.

Suppose that λ0 /∈ lim inf σTn(x). Then there exist a positive integer n1 such
that λ0 /∈ σTn(x), for every n ≥ n1. For simplicity of notation we may assume that
max{n0, n1} = 1. For every µ ∈ K there (Ti − µ)−1 exists, for all i = 0, 1, 2, . . ..
Since K is a compact subset in complex plane, ‖T0 − µ‖ is uniformly bounded on
K and Tn − µ → T0 − µ uniformly on K. Now by [5, Lemma 2] it follows that
(Tn − µ)−1 → (T0 − µ)−1 uniformly on K and, hence, (Tn − µ)−1x → (T0 − µ)−1x

uniformly on K. Let fn be local resolvent of Tn respect to x. Then fn(µ) ≡ (Tn−µ)−1

on K and fn(µ) → f0(µ) ≡ (T0 − µ)−1 uniformly on K. Since the holomorphic
functions fn converge uniformly on the simple closed rectifiable curve K it follows
by [3, Theorem 3.11.6] that the sequence {fn} converges uniformly to a vector valued
holomorphic function f0 in the interior of K. We have for this function f0

x = (Tn − µ)fn(µ) → (T0 − µ)f0(µ),

for all µ inside the curve K. Hence, λ0 /∈ σT0(x) which proves the theorem.
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Now we can prove Theorem 2.2 from [2] like as easy consequence of the previous
theorem.

Corollary 2.2 Let T0 ∈ B(X) has totally disconnected spectrum and let {Tn} be
a sequence of operators in B(X) with SVEP such that Tn → T . Then for every
x ∈ X, σT0(x) ⊂ lim inf σTn(x).

Definition 2.3 With I(X) we denote the set of all operators T ∈ B(X) such that
∩n∈NT n(X) = {0} and i(T ) = r(T ).

Theorem 2.4 Let T ∈ B(X) be a point of spectral continuity. If {Tn} is a sequence
of operators from I(X) such that Tn converges in norm to the operator T , then
σT (x) ⊂ lim inf σTn(x) for every nonzero x ∈ X.

Moreover, if T ∈ I(X), then lim σTn(x) = σT (x), for every nonzero x ∈ X.

Proof. Let {Tn} ⊂ I(X). Then by [4, Proposition 1.6.5] it follows that σTn(X) =
σ(Tn) for every x ∈ X \ {0} and for all n. Now let λ ∈ σT (x), then we have
λ ∈ σT (x) ⊂ σ(T ) ⊂ lim inf σ(Tn) = lim inf σTn(x).

Consider T ∈ I(X). Then the equality holds σT (x) = σ(T ), for every nonzero
x ∈ X and

lim sup σTn(x) = lim sup σ(Tn) ⊂ σ(T ) = σT (x).

Hence, the mapping T 7→ σT (x) is continuous on the set I(X) for every x ∈ X \
{0}.

Theorem 2.5 The mapping T 7→ σT (x) is continuous over the class of all non-
normal, hyponormal weighted shifts on H, for every nonzero x ∈ H, where H is
Hilbert space.

Proof. By [1, Theorem 4.5] we have that the spectrum is a continuous mapping over
the class of non-normal, hyponormal weighted shifts on H, and by [7, Theorem 2.5]
it follows that σT (X) = σ(T ) for every x ∈ X \ {0} and for every non-normal, hy-
ponormal weighted shift T . Hence, form every sequence of non-normal, hyponormal
weighted shifts {Tn} which in norm converge to an operator T from the same class
we have lim σ(x, Tn) = lim σ(Tn) = σ(T ) = σ(x, T ), for every x ∈ H \ {0}.

Lemma 2.6 Let T ∈ B(X) and let x0 ∈ X \ {0} be a vector such that σT (x0) =
σ(T ). Then the mapping x 7→ σT (x) is upper semi-continuous at x0.

Proof. Let {xn} be a sequence in X such that xn → x in norm. Since σ(T ) = σT (x0)
we have lim sup σT (xn) ⊂ lim sup σ(T ) ⊂ σ(T ) = σT (x0), i.e. x 7→ σT (x) is upper
semi-continuous at x0 ∈ X \ {0}.
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Corollary 2.7 If T ∈ I(X), then the function x 7→ σT (x) is continuous at each
x ∈ X \ {0}.

Proof. Since every T ∈ I(X) satisfies Dunford’s condition (C) (see [4, Proposition
1.6.5]), by [2, Theorem 3.1] it follows that the mapping x 7→ σT (x) is lower semi-
continuous at each x ∈ X. The rest of the proof follows by Lemma 2.6

Corollary 2.8 If T ∈ B(X) satisfies Dunford’s condition (C), then the set

S = {x ∈ X : x is the point of continuity of mapping x 7→ σ(x, T )}

is of the second category in X.

Proof. By [4, Proposition 1.3.2] the set S = {x ∈ X : σ(x, T ) = σsu(T ))} is of the
second category in X, then by [2, Theorem 3.1] and Lemma 2.6 it follows that every
x ∈ S is a point of continuity of the mapping x 7→ σ(x, T ).

3. Local resolvent equation

Let T ∈ B(X). Then it is well known that for every λ, µ ∈ ρ(T ), the first resolvent
equation

RT (λ)−RT (µ) = (λ− µ)(RT (λ)−RT (µ)),

holds where RT (λ) = (T − λ)−1 denotes the resolvent function of T at λ ∈ ρ(T ).

Trying to find a generalization of this equation in the context of local spectra
theory, we can ask if a similar equation holds for the local resolvent function, i.e. if
the first local resolvent equation

x̂T (λ)− x̃T (µ) = (λ− µ)x̂T (λ)x̃T (µ)

holds, for every λ, µ ∈ ρT (x), where x̂T (·) and x̃T (·) are the local resolvent functions
of T at x ∈ X in some neighborhood of λ and µ, respectively. We will give a
condition for this local resolvent equation to hold, but in general this question is
still open.

Theorem 3.1 Let T ∈ B(X) has SVEP and x ∈ X \{0}. Then first local resolvent
equation holds for every λ, µ ∈ ρT (x) satisfying λ, µ ∈ ρ(T ) or λ, µ ∈ iso σ(T ).

Proof. If λ, µ ∈ ρ(T ) ∩ ρT (x), then it is well known that the local resolvents are
equal to x̃T (λ) = (T − λ)−1x and x̃T (µ) = (T − µ)−1x, respectively. Now, the local
resolvent equation holds by first resolvent equation.
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Let λ ∈ ρT (x) be an isolated point in σ(T ) and let x̃T (·) be the local resolvent
function in some neighborhood U of λ. Then for every η ∈ U \{λ} we have x̃T (η) =
(T − η)−1x, but every branch of an analytic function x̃T (·) has not necessary an
inverse in U . Hence by [6, pg. 254] we have that the analytic function x̃T (·) is
constant in U , i.e. x̃T (η) = y0 for every η ∈ U , and also x̃T (λ) = y0. Let µ ∈
ρT (x) ∩ ρ(T ) and let x̂T (·) be the local resolvent function in some neighborhood of
µ. Then, for every η ∈ U \ {λ} we have

x̂T (µ)− x̃T (λ) = x̂T (µ)− y0 = x̂T (µ)− x̃T (η).(1)

By the first part of the proof, for η and µ the local resolvent equation holds, i.e.

x̂T (µ)− x̃T (η) = (µ− η)x̂T (µ) · x̃T (η) = (µ− η)x̂T (µ) · y0.(2)

By equations (1) and (2) it follows that the local resolvent equation holds in the
case when λ ∈ ρT (x) ∩ iso σ(T ) and µ ∈ ρT (x) ∩ ρ(T ). The case when λ, µ ∈
ρT (x) ∩ iso σ(T ) is similar to the previous case.

Example 3.2 Let T be an operator on three-dimensional complex space with ma-
trix representation

T =




1/2 0 0
0 1 0
0 0 2




with respect to the standard basis. For the vector x = (0, 1, 0) we have σT (x) = {1}
and of course σ(T ) = {1/2, 1, 2}. The local resolvent functions for T at x = (0, 1, 0)
in some neighborhood of 1/2 and 2 are respectively constant functions x̂T (·) ≡
(0, 2, 0) and x̃T (·) ≡ (0,−1, 0). It is easy to check that

x̂T (1/2)− x̃T (2) = (0, 3, 0) = (
1

2
− 2) · x̂T (1/2) · x̃T (2),

i.e. the local resolvent equation holds for 1/2 and 2.
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University of Nǐs, Faculty of Science, P.O. Box 91, 18000 Nǐs, Yugoslavia
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